THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 3030 Abstract Algebra 2023-24
 Homework 2 Answer

Compulsory Part

1. When $A=\{a\}$ is a singleton, show that the free group $F(A)$ is isomorphic to the infinite cyclic group \mathbb{Z}.

Proof. Any word in $F(A)$ must be of the form $a^{k}, k \in \mathbb{Z}$, and for each $k \neq 0, a^{k} \neq 1$. Hence $F(A) \simeq \mathbb{Z}$.
Another Proof (Categorical approach): We verify that \mathbb{Z} possesses the desired universal property: Let $\phi:\{a\} \rightarrow \mathbb{Z}$ be such that $\phi(a)=1$. Then we need to show that for any group G, and for any map $\psi:\{a\} \rightarrow G$, there exists a unique group homomorphism $f: \mathbb{Z} \rightarrow G$ such that $f \circ \phi=\psi$. Given such a pair $(G, \psi), f \circ \phi=\psi \Longleftrightarrow f(1)=\psi(a)$. There do exists a unique homomorphism $f: \mathbb{Z} \rightarrow G$ such that $f(1)=\psi(a)$: It is the f such that $f(n)=\psi(a)^{n}$ for any $n \in \mathbb{Z}$.
2. Verify that $\mathbb{Z}^{\oplus A}:=\{f: A \rightarrow \mathbb{Z}: f(a) \neq 0$ for only finitely many $a \in A\}$ is indeed an abelian group, for any given set A.

Proof. For $f \in \mathbb{Z}^{\oplus A}$, let $\operatorname{Supp}(f):=\{a \in A \mid f(a) \neq 0\}$. Then $|\operatorname{Supp}(f)|<\infty$ for any $f \in \mathbb{Z}^{\oplus A}$. Note that $\operatorname{Supp}(f+g) \subseteq \operatorname{Supp}(f) \cup \operatorname{Supp}(g)$. Therefore, $\operatorname{Supp}(f+g)$ is also finite, thus $\mathbb{Z}^{\oplus A}$ is closed under the operation + .

Next, as integer-valued functions, $(f+g)+h=f+(g+h)$ and $f+g=g+f$ for any $f, g, h \in \mathbb{Z}^{\oplus A}$. The 0 function $0(a)=0$ for any $a \in A$ serves as the identity in $\mathbb{Z}^{\oplus A}$, and the inverse of f is $-f$ with $(-f)(a)=-(f(a))$, where both 0 and $-f$ lie in $\mathbb{Z}^{\oplus A}$ because $\operatorname{Supp}(0)=\varnothing$, and $\operatorname{Supp}(-f)=\operatorname{Supp}(f)$. Thus, we have verified that $\left(\mathbb{Z}^{\oplus A},+\right)$ is an abelian group.
3. Show that a finitely generated abelian group can be presented as a quotient of $\mathbb{Z}^{\oplus n}$ for some positive integer n.

Proof. By the structure theorem of finitely generated abelian group, the group is isomorphic to $\mathbb{Z}^{\oplus m} \oplus\left(\bigoplus_{i=1}^{n} \mathbb{Z}_{p_{i}^{r_{i}}}\right)$.
Hence it can be represented by the quotient $\mathbb{Z}^{m+n} /\left(0 \oplus\left(\bigoplus_{i=1}^{n} p_{i}^{r_{i}} \mathbb{Z}\right)\right)$.
4. Prove that $\left(\mathbb{Q}_{>0}, \cdot\right)$ is a free abelian group, meaning that it is isomorphic to $\mathbb{Z}^{\oplus A}$ for some set A.
[Hint: Use the fundamental theorem of arithemetic, i.e., every positive integer can be uniquely factorized as a product of primes.]

Proof. Consider the set \mathbb{P} of all prime numbers. We claim that $\mathbb{Q}_{>0}$ is free on the basis \mathbb{P} with respect to multiplication.
To show this, we first note that every positive rational number q can be uniquely expressed in the form $q=\prod_{p \in \mathbb{P}} p^{n_{p}}$, where $n_{p} \in \mathbb{Z}$ and all but finitely many n_{p} are zero. This is a direct consequence of the Fundamental Theorem of Arithmetic, as each n_{p} represents the power of the prime p in the prime factorization of q (positive for factors in the numerator and negative for factors in the denominator).
In other words, each element of $\mathbb{Q}_{>0}$ can be uniquely expressed as a finite product of elements of \mathbb{P} raised to integer powers. This means that the set \mathbb{P} forms a basis for $\mathbb{Q}>0$ with respect to multiplication, and that $\mathbb{Q}_{>0}$ is free on \mathbb{P}.
This basis has the same cardinality as $\mathbb{Z}^{\oplus A}$ for $A=\mathbb{P}$, so $\left(\mathbb{Q}_{>0}, \cdot\right)$ is isomorphic to $\mathbb{Z}^{\oplus A}$, as required.
5. Let G be a group. For any $g \in G$, the map $i_{g}: G \rightarrow G$ defined by $i_{g}(a)=g a g^{-1}$ for any $a \in G$ is an automorphism of G, which is called an inner automorphism of G. Prove that the set $\operatorname{Inn}(G)$ of inner automorphisms of G is a normal subgroup of the automorphism group $\operatorname{Aut}(G)$ of G.
[Warning: Be sure to show that the inner automorphisms do form a subgroup.]
Proof. Let G be a group. Define the map $\phi: G \rightarrow \operatorname{Aut}(G)$ by $g \mapsto i_{g}$, where $i_{g}(x)=$ $g x g^{-1}$ is the conjugation by g. We show that ϕ is a homomorphism. Let $g, h \in G$. Then $i_{g h}(x)=(g h) x(g h)^{-1}=g\left(h x h^{-1}\right) g^{-1}=g\left(i_{h}(x)\right) g^{-1}=i_{g}\left(i_{h}(x)\right)$. Note that $\operatorname{Inn}(G)=\phi(G)$. Therefore, $\operatorname{Inn}(G)$ is a subgroup of $\operatorname{Aut}(G)$.
Let $\phi \in \operatorname{Aut}(G), g \in G$. Then

$$
\begin{aligned}
& \phi i_{g} \phi^{-1}(x) \\
= & \phi\left(g \phi^{-1}(x) g^{-1}\right) \\
= & \phi(g) \phi\left(\phi^{-1}(x)\right) \phi\left(g^{-1}\right) \\
= & \phi(g) x(\phi(g))^{-1} \\
= & i_{\phi(g)}(x) .
\end{aligned}
$$

Therefore, $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$.
6. Show that an intersection of normal subgroups of a group G is again a normal subgroup of G.

Proof. Let $\left\{N_{\alpha}\right\}_{\alpha \in I}$ be a family of normal subgroups of G. Then $e_{G} \in N_{\alpha}$ for each α, so $e_{G} \in \bigcap N_{\alpha}$. Let $a, b \in \bigcap N_{\alpha}$. Then for any $\alpha \in I, a, b \in N_{\alpha}$, so $a b^{-1} \in N_{\alpha}$ as $N_{\alpha} \leq G$. Therefore, $a b^{-1} \in \bigcap N_{\alpha}$. It follows that $\bigcap N_{\alpha}<G$.
For any $g \in G, a \in \bigcap N_{\alpha}, g a g^{-1} \in N_{\alpha}$ for each N_{α}, because each $N_{\alpha} \triangleleft G$. Therefore, $g a g^{-1} \in \bigcap N_{\alpha}$. Thus, $\bigcap N_{\alpha} \triangleleft G$.
7. Let G be a group containing at least one subgroup of a fixed finite order s. Show that the intersection of all subgroups of G of order s is a normal subgroup of G.
[Hint: Use the fact that if H has order s, then so does $x^{-1} H x$ for all $x \in G$.]
Proof. Let $K=\bigcap_{H<G,|H|=s} H$. We show that $K \triangleleft G$. First, K is a subgroup of G as it is the intersection of a family of subgroups of G. Let $a \in G$. Then $a K a^{-1}=\bigcap_{H<G,|H|=s} a H a^{-1}$. Clearly, for each $H<G$ with $|H|=s, a H a^{-1}$ also satisfies $a H a^{-1}<G$ and $\left|a H a^{-1}\right|=$ s. Therefore, $a K a^{-1}=\bigcap_{H<G,|H|=s} a H a^{-1} \subseteq \bigcap_{H<G,|H|=s} H=K$. It follows that $K \triangleleft G$.

Optional Part

1. Let G be a finite group with $|G|$ odd. Show that the equation $x^{2}=a$, where x is the indeterminate and a is any element in G, always has a solution. (In other words, every element in G is a square.)

Proof. For any $a \in G$, suppose the order of a is n. Then n is odd since $|G|$ is odd. Let $b=a^{\frac{n+1}{2}}$, we have $b^{2}=a^{n+1}=a$.
2. Generalizing the above question: If G is a finite group of order n and k is an integer relatively prime to n, show that the map $G \rightarrow G, a \mapsto a^{k}$ is surjective.

Proof. $\forall a \in G$, suppose the order of a is m where $m \mid n$. There exists some t such that $k t=1 \bmod n$ since n and k are relatively prime. Define $b=a^{t}$, then $b^{t}=a^{k t}=a$.
3. Prove that every finite group is finitely presented.

Proof. Let $X=\left\{g_{1}, \ldots, g_{n}\right\}$ be the set of all elements of G, then we can define the surjective homomorphism $\phi: F(X) \rightarrow G$ which maps all words to the corresponding words in G . Therefore, G is finitely generated. The relations of G are finitely generated. It suffices to use all the $g_{i} g_{j} g_{\phi(i, j)}^{-1}=e$ kind of relation, where $\phi(i, j)$ is such that $g_{i} g_{j}=$ $g_{\phi(i, j)}$. The number of generating relations used is n^{2}.
4. We have learnt that a presentation of the dihedral group D_{n} is given by $\left(a, b \mid a^{2}, b^{n}\right)$.

Let a, b be distinct elements of order 2 in a group G. Suppose that $a b$ has finite order $n \geq 3$. Prove that the subgroup $\langle a, b\rangle$ generated by a and b is isomorphic to the dihedral group D_{n} (which has $2 n$ elements).

Proof. The subgroup $\langle a, b\rangle=\langle a, a b\rangle$ satisifies the relation: $a^{2}=e,(a b)^{n}=e, b^{2}=$ $\left(a^{-1} a b\right)^{2}=e$. Hence we have a surjective group homomorphism $\phi: D_{n}=\langle r, s| r^{n}=$ $\left.s^{2}=r s r s=1\right\rangle \rightarrow\langle a, b\rangle$ with $\phi(s)=a, \phi(r)=a b$.
Note that $\langle a b\rangle<\langle a, a b\rangle$. Because ord $(a b) \geq 3, a b \neq(a b)^{-1}$. Then $a b \neq b a$, so $\langle a, b\rangle$ is not abelian. Therefore, $[\langle a, b\rangle:\langle a b\rangle] \geq 2$. Then $|\langle a, b\rangle| \geq 2 n$. Since $\phi: D_{n} \rightarrow\langle a, a b\rangle$ is surjective, it must be that $|\langle a, b\rangle|=2 n$, and that ϕ is bijective. Therefore, $\langle a, b\rangle \simeq$ D_{n}.
5. Let $G=\mathbb{Z}^{\oplus \mathbb{N}}$. Prove that $G \times G \cong G$ (as abelian groups).

Proof. Define a homomorphism:

$$
\mathbb{Z}^{\mathbb{N}} \times \mathbb{Z}^{\mathbb{N}} \longrightarrow \mathbb{Z}^{2 \mathbb{N}+1} \times \mathbb{Z}^{2 \mathbb{N}} \cong \mathbb{Z}^{\mathbb{N}}
$$

Clearly it is a bijective, hence isomorphism.
6. Prove that $(\mathbb{Q},+)$ is not a free abelian group.

Proof. Suppose, for contradiction, that $(\mathbb{Q},+)$ is a free abelian group with basis B.
First, note that for any $a \in \mathbb{Q}, Z a \neq \mathbb{Q}$, where $Z a$ represents the set of all integer multiples of a. This means that no single element can generate the whole group, implying that B must contain at least two distinct elements.
Let a and b be two distinct elements in B. We can represent a and b as m / n and p / q respectively, for some integers m, n, p, q with $n, q \neq 0$.
Now, consider the relation $m q b=n p a$. Since at least one of a, b in nonzero, we have $m \neq 0$ or $p \neq 0$. This relation implies that a and b are not independent over \mathbb{Z}, which contradicts our assumption that B is a basis.
Therefore, we have a contradiction, so $(\mathbb{Q},+)$ cannot be a free abelian group.
7. Show that if a finite group G has exactly one subgroup H of a given order, then H is a normal subgroup of G.

Proof. Let $a \in G$. Then $a H a^{-1}$ is a subgroup of G (it is the image of H under the inner automorphism $x \mapsto a x a^{-1}$) and has the same order as H. By the assumption, $a H a^{-1}$ must be equal to H. Therefore, H is normal.
8. Show that the set of all $g \in G$ such that the inner automorphism $i_{g}: G \rightarrow G$ is the identity inner automorphism i_{e} is a normal subgroup of a group G.

Proof. Let G be a group. Define the map $\phi: G \rightarrow \operatorname{Aut}(G)$ by $g \mapsto i_{g}$. We show that ϕ is a homomorphism. Let $g, h \in G$. Then $i_{g h}(x)=(g h) x(g h)^{-1}=g\left(h x h^{-1}\right) g^{-1}=$ $g\left(i_{h}(x)\right) g^{-1}=i_{g}\left(i_{h}(x)\right)$. Now the set of all $g \in G$ such that i_{g} is the identity inner automorphism is the kernel of ϕ. It follows that this set is a normal subgroup of G.

