THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH 3030 Abstract Algebra 2023-24 Homework 2 Answer

Compulsory Part

1. When $A = \{a\}$ is a singleton, show that the free group F(A) is isomorphic to the infinite cyclic group \mathbb{Z} .

Proof. Any word in F(A) must be of the form a^k , $k \in \mathbb{Z}$, and for each $k \neq 0$, $a^k \neq 1$. Hence $F(A) \simeq \mathbb{Z}$.

Another Proof (Categorical approach): We verify that \mathbb{Z} possesses the desired universal property: Let $\phi:\{a\}\to\mathbb{Z}$ be such that $\phi(a)=1$. Then we need to show that for any group G, and for any map $\psi:\{a\}\to G$, there exists a unique group homomorphism $f:\mathbb{Z}\to G$ such that $f\circ\phi=\psi$. Given such a pair $(G,\psi), f\circ\phi=\psi\iff f(1)=\psi(a)$. There do exists a unique homomorphism $f:\mathbb{Z}\to G$ such that $f(1)=\psi(a)$: It is the f such that $f(n)=\psi(a)^n$ for any $n\in\mathbb{Z}$.

2. Verify that $\mathbb{Z}^{\oplus A} := \{ f : A \to \mathbb{Z} : f(a) \neq 0 \text{ for only finitely many } a \in A \}$ is indeed an abelian group, for any given set A.

Proof. For $f \in \mathbb{Z}^{\oplus A}$, let $\operatorname{Supp}(f) := \{a \in A \mid f(a) \neq 0\}$. Then $|\operatorname{Supp}(f)| < \infty$ for any $f \in \mathbb{Z}^{\oplus A}$. Note that $\operatorname{Supp}(f+g) \subseteq \operatorname{Supp}(f) \cup \operatorname{Supp}(g)$. Therefore, $\operatorname{Supp}(f+g)$ is also finite, thus $\mathbb{Z}^{\oplus A}$ is closed under the operation +.

Next, as integer-valued functions, (f+g)+h=f+(g+h) and f+g=g+f for any $f,g,h\in\mathbb{Z}^{\oplus A}$. The 0 function 0(a)=0 for any $a\in A$ serves as the identity in $\mathbb{Z}^{\oplus A}$, and the inverse of f is -f with (-f)(a)=-(f(a)), where both 0 and -f lie in $\mathbb{Z}^{\oplus A}$ because $\mathrm{Supp}(0)=\varnothing$, and $\mathrm{Supp}(-f)=\mathrm{Supp}(f)$. Thus, we have verified that $(\mathbb{Z}^{\oplus A},+)$ is an abelian group.

3. Show that a finitely generated abelian group can be presented as a quotient of $\mathbb{Z}^{\oplus n}$ for some positive integer n.

Proof. By the structure theorem of finitely generated abelian group, the group is isomorphic to $\mathbb{Z}^{\oplus m} \oplus (\bigoplus_{i=1}^n \mathbb{Z}_{p_i^{r_i}})$.

Hence it can be represented by the quotient $\mathbb{Z}^{m+n}/(0 \oplus (\bigoplus_{i=1}^n p_i^{r_i}\mathbb{Z}))$.

4. Prove that $(\mathbb{Q}_{>0},\cdot)$ is a free abelian group, meaning that it is isomorphic to $\mathbb{Z}^{\oplus A}$ for some set A.

[*Hint*: Use the fundamental theorem of arithemetic, i.e., every positive integer can be uniquely factorized as a product of primes.]

Proof. Consider the set \mathbb{P} of all prime numbers. We claim that $\mathbb{Q}_{>0}$ is free on the basis \mathbb{P} with respect to multiplication.

To show this, we first note that every positive rational number q can be uniquely expressed in the form $q = \prod_{p \in \mathbb{P}} p^{n_p}$, where $n_p \in \mathbb{Z}$ and all but finitely many n_p are zero. This is a direct consequence of the Fundamental Theorem of Arithmetic, as each n_p represents the power of the prime p in the prime factorization of q (positive for factors in the numerator and negative for factors in the denominator).

In other words, each element of $\mathbb{Q}_{>0}$ can be uniquely expressed as a finite product of elements of \mathbb{P} raised to integer powers. This means that the set \mathbb{P} forms a basis for $\mathbb{Q}_{>0}$ with respect to multiplication, and that $\mathbb{Q}_{>0}$ is free on \mathbb{P} .

This basis has the same cardinality as $\mathbb{Z}^{\oplus A}$ for $A = \mathbb{P}$, so $(\mathbb{Q}_{>0}, \cdot)$ is isomorphic to $\mathbb{Z}^{\oplus A}$, as required.

5. Let G be a group. For any $g \in G$, the map $i_g : G \to G$ defined by $i_g(a) = gag^{-1}$ for any $a \in G$ is an automorphism of G, which is called an **inner automorphism** of G. Prove that the set Inn(G) of inner automorphisms of G is a normal subgroup of the automorphism group Aut(G) of G.

[Warning: Be sure to show that the inner automorphisms do form a subgroup.]

Proof. Let G be a group. Define the map $\phi: G \to \operatorname{Aut}(G)$ by $g \mapsto i_g$, where $i_g(x) = gxg^{-1}$ is the conjugation by g. We show that ϕ is a homomorphism. Let $g, h \in G$. Then $i_{gh}(x) = (gh)x(gh)^{-1} = g(hxh^{-1})g^{-1} = g(i_h(x))g^{-1} = i_g(i_h(x))$. Note that $\operatorname{Inn}(G) = \phi(G)$. Therefore, $\operatorname{Inn}(G)$ is a subgroup of $\operatorname{Aut}(G)$.

Let $\phi \in Aut(G), g \in G$. Then

$$\phi i_g \phi^{-1}(x)$$

$$= \phi(g \phi^{-1}(x) g^{-1})$$

$$= \phi(g) \phi(\phi^{-1}(x)) \phi(g^{-1})$$

$$= \phi(g) x(\phi(g))^{-1}$$

$$= i_{\phi(g)}(x).$$

Therefore, $\operatorname{Inn}(G) \lhd \operatorname{Aut}(G)$.

6. Show that an intersection of normal subgroups of a group G is again a normal subgroup of G.

Proof. Let $\{N_{\alpha}\}_{{\alpha}\in I}$ be a family of normal subgroups of G. Then $e_G\in N_{\alpha}$ for each α , so $e_G\in \bigcap N_{\alpha}$. Let $a,b\in \bigcap N_{\alpha}$. Then for any $\alpha\in I$, $a,b\in N_{\alpha}$, so $ab^{-1}\in N_{\alpha}$ as $N_{\alpha}\leq G$. Therefore, $ab^{-1}\in \bigcap N_{\alpha}$. It follows that $\bigcap N_{\alpha}< G$.

For any
$$g \in G$$
, $a \in \bigcap N_{\alpha}$, $gag^{-1} \in N_{\alpha}$ for each N_{α} , because each $N_{\alpha} \triangleleft G$. Therefore, $gag^{-1} \in \bigcap N_{\alpha}$. Thus, $\bigcap N_{\alpha} \triangleleft G$.

7. Let G be a group containing at least one subgroup of a fixed finite order s. Show that the intersection of all subgroups of G of order s is a normal subgroup of G.

[Hint: Use the fact that if H has order s, then so does $x^{-1}Hx$ for all $x \in G$.]

Proof. Let $K = \bigcap_{H < G, |H| = s} H$. We show that $K \triangleleft G$. First, K is a subgroup of G as it is the intersection of a family of subgroups of G. Let $g \in G$. Then $g K g^{-1} = G$.

intersection of a family of subgroups of G. Let $a \in G$. Then $aKa^{-1} = \bigcap_{H < G, |H| = s} aHa^{-1}$. Clearly, for each H < G with |H| = s, aHa^{-1} also satisfies $aHa^{-1} < G$ and $|aHa^{-1}| = G$.

Clearly, for each H < G with |H| = s, aHa^{-1} also satisfies $aHa^{-1} < G$ and $|aHa^{-1}| = s$. Therefore, $aKa^{-1} = \bigcap_{H < G, |H| = s} aHa^{-1} \subseteq \bigcap_{H < G, |H| = s} H = K$. It follows that $K \triangleleft G$.

Optional Part

1. Let G be a finite group with |G| odd. Show that the equation $x^2 = a$, where x is the indeterminate and a is any element in G, always has a solution. (In other words, every element in G is a square.)

Proof. For any $a \in G$, suppose the order of a is n. Then n is odd since |G| is odd. Let $b = a^{\frac{n+1}{2}}$, we have $b^2 = a^{n+1} = a$.

2. Generalizing the above question: If G is a finite group of order n and k is an integer relatively prime to n, show that the map $G \to G$, $a \mapsto a^k$ is surjective.

Proof. $\forall a \in G$, suppose the order of a is m where m|n. There exists some t such that $kt = 1 \mod n$ since n and k are relatively prime. Define $b = a^t$, then $b^t = a^{kt} = a$. \square

3. Prove that every finite group is finitely presented.

Proof. Let $X = \{g_1, ..., g_n\}$ be the set of all elements of G, then we can define the surjective homomorphism $\phi: F(X) \to G$ which maps all words to the corresponding words in G. Therefore, G is finitely generated. The relations of G are finitely generated. It suffices to use all the $g_ig_jg_{\phi(i,j)}^{-1} = e$ kind of relation, where $\phi(i,j)$ is such that $g_ig_j = g_{\phi(i,j)}$. The number of generating relations used is n^2 .

4. We have learnt that a presentation of the dihedral group D_n is given by $(a, b \mid a^2, b^n)$.

Let a, b be distinct elements of order 2 in a group G. Suppose that ab has finite order $n \geq 3$. Prove that the subgroup $\langle a, b \rangle$ generated by a and b is isomorphic to the dihedral group D_n (which has 2n elements).

Proof. The subgroup $\langle a,b\rangle=\langle a,ab\rangle$ satisfies the relation: $a^2=e,(ab)^n=e,b^2=(a^{-1}ab)^2=e.$ Hence we have a surjective group homomorphism $\phi:D_n=\langle r,s\mid r^n=s^2=rsrs=1\rangle \rightarrow \langle a,b\rangle$ with $\phi(s)=a,\phi(r)=ab.$

Note that $\langle ab \rangle < \langle a,ab \rangle$. Because $\operatorname{ord}(ab) \geq 3$, $ab \neq (ab)^{-1}$. Then $ab \neq ba$, so $\langle a,b \rangle$ is not abelian. Therefore, $[\langle a,b \rangle : \langle ab \rangle] \geq 2$. Then $|\langle a,b \rangle| \geq 2n$. Since $\phi: D_n \to \langle a,ab \rangle$ is surjective, it must be that $|\langle a,b \rangle| = 2n$, and that ϕ is bijective. Therefore, $\langle a,b \rangle \simeq D_n$.

5. Let $G=\mathbb{Z}^{\oplus \mathbb{N}}.$ Prove that $G\times G\cong G$ (as abelian groups).

Proof. Define a homomorphism:

$$\mathbb{Z}^{\mathbb{N}} \times \mathbb{Z}^{\mathbb{N}} \longrightarrow \mathbb{Z}^{2\mathbb{N}+1} \times \mathbb{Z}^{2\mathbb{N}} \cong \mathbb{Z}^{\mathbb{N}}$$

Clearly it is a bijective, hence isomorphism.

6. Prove that $(\mathbb{Q}, +)$ is not a free abelian group.

Proof. Suppose, for contradiction, that $(\mathbb{Q},+)$ is a free abelian group with basis B. First, note that for any $a\in\mathbb{Q}$, $Za\neq\mathbb{Q}$, where Za represents the set of all integer multiples of a. This means that no single element can generate the whole group, implying that B must contain at least two distinct elements. Let a and b be two distinct elements in B. We can represent a and b as m/n and p/q respectively, for some integers m, n, p, q with $n, q \neq 0$. Now, consider the relation mqb = npa. Since at least one of a, b in nonzero, we have $m \neq 0$ or $p \neq 0$. This relation implies that a and b are not independent over \mathbb{Z} , which contradicts our assumption that B is a basis.

Therefore, we have a contradiction, so $(\mathbb{Q}, +)$ cannot be a free abelian group. \Box

7. Show that if a finite group G has exactly one subgroup H of a given order, then H is a normal subgroup of G.

Proof. Let $a \in G$. Then aHa^{-1} is a subgroup of G (it is the image of H under the inner automorphism $x \mapsto axa^{-1}$) and has the same order as H. By the assumption, aHa^{-1} must be equal to H. Therefore, H is normal.

8. Show that the set of all $g \in G$ such that the inner automorphism $i_g : G \to G$ is the identity inner automorphism i_e is a normal subgroup of a group G.

Proof. Let G be a group. Define the map $\phi: G \to \operatorname{Aut}(G)$ by $g \mapsto i_g$. We show that ϕ is a homomorphism. Let $g,h \in G$. Then $i_{gh}(x) = (gh)x(gh)^{-1} = g(hxh^{-1})g^{-1} = g(i_h(x))g^{-1} = i_g(i_h(x))$. Now the set of all $g \in G$ such that i_g is the identity inner automorphism is the kernel of ϕ . It follows that this set is a normal subgroup of G. \Box